
How to…  
Write applications using Visual Basic

Last month, we enhanced our Units application by adding a combo box, to allow the user 
to choose which types of units to convert between.  However, we didn’t add any code to 
take advantage of this new feature.  This month, we’ll add the remaining code and I’ll 
explain the new terms used in the Form_Load event handler you entered last month.

Open last month’s project (you did save it didn’t you?).  As usual, you can find a copy on
this cover CD in (ED: Please insert the path to the project files here).

Filling in the blanks

Double-click on an empty part of the form to display its Form_Load event handler.  You 
will see the code that we entered last month to populate (fill) the arrays with information 
about the various types of conversions that can take place.  Notice that Dim was used to 
declare the intIndex variable since we are declaring it inside a procedure.  Had this 
variable been declared at module level, Public or Private would have been used instead.  

Next, we place the conversion unit names and multiplication factors into the arrays.  
Readers who have used older versions of BASIC may remember the Read and Data 
statements, which would have provided a more elegant way of placing the values into the 
arrays.  Unfortunately, VB does not provide these facilities so we have to do it the hard 
way.  Then, the code loops through the arrays and adds their contents to the combo box 
using the AddItem method.  

Methods vs Properties

Methods are similar to properties, except that methods normally perform some action on 
a control, rather than altering its behaviour or obtaining information as a property would.

For example, consider an imaginary “car” control that would emulate a car.  This car 
control would have one method (StartEngine) and one property (FuelRemaining).  
StartEngine would be a method because it performs an action with the car, in this case, 
starts the engine.   FuelRemaining on the other hand, would be implemented as a 
property since it merely conveys information (the amount of fuel remaining).  

Notice the user of the ampersand (&) operator to concatenate (join together) the contents 
of the two arrays with the text “ to ”.  Previous versions of BASIC used the “+” operator 
to concatenate strings, but VB uses the ampersand to achieve the same thing.

Fooling VB

Finally, the code pre-selects the first item in the combo box by setting its ListIndex 
property to 0.  Items in a combo box are referred to by their indices, 0 being the first, 1 



being the second, and so on.  Setting this property will cause a click event to be raised for
the combo box, to fool VB in to thinking that the user has made a choice.  VB will in 
turn, run the click event handler on the combo box, which we haven’t written yet.  As you
will have gathered, if there is no code provided for an event handler, nothing will take 
place.  We’ll add the necessary code in a moment.  

Finally, notice that we used an apostrophe (‘) to add a comment to the code, explaining 
what the line did.  Older version of BASIC used the Rem statement to achieve the same 
thing.  You can use Rem if you want, but I prefer the apostrophe since it looks less 
cluttered.

Watch those events

Now it’s time to add the code for the Click event handler for our combo box.  Close the 
code window to return to the form.  Double-click the combo box to view its event 
handler.  VB has incorrectly assumed that we wanted the Change event and has created 
some skeleton code for us.  Choose Click from the right-hand combo box in the code 
window, and then enter the following code

Dim intIndex As Integer
intIndex = cboConversionTypes.ListIndex

    
lblFromUnits = mastrFromUnitNames(intIndex)
txtFromUnits = ""
lblToUnits = mastrToUnitNames(intIndex)
txtToUnits = ""

    
msngChosenFactor = masngMultiplicationFactors(intIndex)

This code determines which item was chosen from the combo box by examining the 
combo box’s ListIndex property.  Reading ListIndex merely gets its value, unlike setting 
ListIndex, which would cause the Click event to run, like we did in Form_Load.  The 
index we obtained is used to look up the corresponding “from” and “to” unit names, and 
the appropriate text is placed into the Caption properties of the two label controls.  Next, 
the Text properties of the two textboxes are emptied to clear any old entries.  Finally, the 
corresponding multiplication factor is stored for later use in msngChosenFactor.

Default Properties

Notice that I didn’t explicitly state that I wanted to use the Caption properties of the 
labels, nor did I mention the Text property of the textboxes.  That is because the Caption 
property is the default property of a label, and the Text property is the default property of 
a textbox.  Since they are defaults, VB assumes that they are the properties I wanted, and 
uses them as appropriate.  In fact, the code in the Click event handler of the cmdConvert 
button didn’t need the Text properties of the two text boxes to be explicitly mentioned 
either.  I included these properties when we started off because it made the code obvious 



as to which properties it was referring.  Now we’re getting more proficient at VB, I’ll 
show you other shortcuts like these.  There are some circumstances where you would 
have to include the Text property even though it is the default – I’ll point these out and 
explain them when we encounter them later in this series.  

Now, remove the skeleton code for the Change event that VB mistakenly created for us 
earlier.  

Bugs that Bite

Run the program now by clicking the “Start” button on VB’s toolbar.  Notice that the first
item in the combo box has already been selected for us, courtesy of the final line in 
Form_Load.  You can also see that the label captions <From> and <To> have been 
replaced with the names of the respective units, thanks to the code on the combo box’s 
click event handler. Enter a value into the topmost textbox (the “from units” field) and 
then click on the Convert button.  The application crashes with an error – “Variable not 
defined”.  This is because the code in the click event handler of cmdConvert is still using 
the old control names.  This is the deliberate mistake I left you to find last month.  
Dismiss VB’s dialog box by clicking Ok, and then click on the “End” button on VB’s 
toolbar.  The point of this is that you didn’t find out about this problem until VB tried to 
run the code that contained the old names.

There is a way to get VB to perform a more thorough check throughout all of your code 
before actually running the application.  To do this, start the program again, but this time,
choose Start With Full Compile from VB’s Run menu.  VB finds the problem straight 
away and alerts you to its presence.  The moral of this story is, be careful when changing 
control names.  If you need to rename any controls, it would be a good idea to use VB’s 
search-and-replace utility in the Edit menu to help you look for the old control names.  
Be careful with the “Replace All” option though, it might have unforeseen consequences.
I recommend that you check the “Find Whole Word Only” option and click the Find 
button, making your own choices as to what should be replaced or not.

Squashing Bugs

Let’s fix the problem with the old control names – replace the existing code in 
cmdConvert’s click event handler with the following line:

txtToUnits = txtFromUnits * msngChosenFactor

That tells VB to multiply the “from” units by the multiplication factor, which the user 
determined by selecting a conversion type from the combo box.  The result is then placed
into the “to” units textbox.  Notice that I’ve left the Text properties off once again, since 
they are not required.

1+1=3?



That’s it – our little application should work fine now.  Start the program, enter a value 
into the “from” units textbox and click the Convert button.  A result now appears.  Try 
choosing other conversion types from the combo box and watch the labels for the 
textboxes change depending on which conversion type you choose.

However, notice that in some cases, the result is very slightly out (in numerical terms).  
For example, if you choose the “Inches to Centimetres” conversion and then convert 10 
inches into centimetres, you get 25.1999998092651 instead of 25.2!  And no, it’s not 
because you’re using a Pentium.  The problem is, we’ve mixed variable types when 
performing the multiplication.

It’s just not my type

At the moment, we’re multiplying a string (the implicit Text property of txtFromUnits) by
a single (msngChosenFactor).  In reality, this isn’t allowed so VB has been automatically 
converting the string into numerical form so that it could perform the multiplication.  
Likewise, VB automatically converted the result back into a string so that the result could
be placed into the txtToUnits textbox.  This is one of the cases where VB’s default 
conversion between different variable types has gone wrong and an incorrect type has 
been assumed.  To fix this, we need to explicitly tell VB what variable types we want to 
use.  Replace the line of code in the click event of cmdConvert with the following code:

txtToUnits = CStr(CSng(txtFromUnits) * 
msngChosenFactor)

That tells VB to convert the string value in txtFromUnits into a single via CSng.  Then, 
VB multiplies this by the value in msngChosenFactor.  This works as expected since 
both values are singles.  Finally, the result of that calculation is converted back into a 
string suitable for the txtToUnits textbox via CStr.  CStr and CSng are roughly analogous 
to the VAL and STR$ keywords that users of other BASICs might be familiar with, except
that CStr explicitly converts to a single whereas VAL does not.  The code would work 
fine without the CStr, but I recommend that you always explicitly convert between types 
of variable to prevent problems such as the one we’ve just seen from occurring.

In Closing

Try running the program again – you should find that everything works as planned.  As 
an exercise, you might want to try adding your own conversions as well.  If you do this, 
you’ll need to change the dimensions of the arrays and alter the code in Form_Load to 
accommodate the new conversion types.

Well, that’s all until next time, when I’ll be delving deeper into VB’s innards,
Happy tinkering,

Nick.



Nicholas Scott is a freelance columnist who currently works for MIS Computer Services 
in Northwich.  Nick can be contacted via email at nicks@miscs.com.



Element
Number

Array Name
mastrToUnitNames mastrFromUnitNames masngMultiplicationFactors

0 Kilometres Miles 1.6093
1 Metres Yards 0.9144
2 Metres Feet 0.3048
3 Centimetres Inches 2.52

Step 1: User chooses the third list item.  This sets the combo 
box’s ListIndex property to 2 (don’t forget that list items are 
number from 0, not 1) and causes a click event to be raised.

Step 2: The click event of 
the combo box looks up the 
elements corresponding to 
the ListIndex property (2) in
the arrays, and updates the 
form with the appropriate 
values.  The corresponding 
element (2) in array 
masngMultiplicationFactors
is stored in the module-level
variable msngChosenFactor 
for use later. Variable : msngChosenFactor 0.3048

    5
x  0.3048 
    1.524 

Step 3: The user enters a number (5) and
clicks the Convert button.  The value in 
the “from” units textbox (5) is multiplied
by the value in  the form-level variable 
msngChosenFactor (0.3048) to give the 
result (1.524) which is placed into the 
“to” units textbox.

How our application works

(ED: This is the large picture – it would be really nice if you could include it, although given its size, I find that unlikely.  The 
filenames for the three bitmaps going from top to bottom are Image1_ComboChoice.bmp, Image2_FormWithChoice.bmp and 
Image3_CalculationComplete.



(ED:  Here are some alternate pictures you can use if the above won’t fit)

Element
Number

Array Name
mastrFromUnitNames mastrToUnitNames masngMultiplicationFactors

0 Miles Kilometres 1.6093
1 Yards Metres 0.9144
2 Feet Metres 0.3048
3 Inches Centimetres 2.52

Here are the various “from” and “to” unit names along with their associated 
multiplication factors.  First of all, the user chooses an item from the combo box.  VB 
sets the combo box’s ListIndex property to reflect the number of the item that was 
chosen.  Then, the program chooses values from the arrays whose element numbers 
match the ListIndex property of the combo box.  These values are then used to change the
Caption properties of the two label controls.  The multiplication factor is stored for use 
later, when the actual conversion will take place.



(ED: The filename for the following bitmap is Image4_ConversionTypes.bmp)

Here is our finished application displaying the types of conversion it can handle.



(ED: The filename for this bitmap is Image2_FormWithChoice.bmp)

Here is our finished application in action, having performed something different than the 
usual Inches-to-Centimetres conversion.


	How our application works
	Filling in the blanks
	Methods vs Properties
	Fooling VB
	Default Properties
	It’s just not my type
	In Closing
	Array Name
	Array Name



